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Co-option of a default secretory pathway for plant

immune responses

Chian Kwon', Christina Neu't, Simone Pajonk’, Hye Sup Yun', Ulrike Lipka'*f, Matt Humphry', Stefan Bau',

Marco Straus', Mark Kwaaitaal’,
Volker Lipka'*f & Paul Schulze-Lefert'

Cell-autonomous immunity is widespread in plant—fungus inter-
actions and terminates fungal pathogenesis either at the cell sur-
face or after pathogen entry. Although post-invasive resistance
responses typically coincide with a self-contained cell death of
plant cells undergoing attack by parasites, these cells survive
pre-invasive defence. Mutational analysis in Arabidopsis iden-
tified PENI1 syntaxin as one component of two pre-invasive
resistance pathways against ascomycete powdery mildew fungi'~.
Here we show that plasma-membrane-resident PEN1 promis-
cuously forms SDS-resistant soluble N-ethylmaleimide sensitive
factor attachment protein receptor (SNARE) complexes together
with the SNAP33 adaptor and a subset of vesicle-associated mem-

Heike Rampelt?, Farid El Kasmi’,

Gerd Jiirgens®, Jane Parker', Ralph Panstruga’,

penl-3 allele allow intermediate B. graminis entry rates, indicating
residual PEN1-3 resistance activity (Supplementary Fig. 1a). In the
deduced PEN1-3 protein, a glycine residue is substituted by a gluta-
mate in the SNARE domain' (Supplementary Fig. 1b). Because this
mutation affects a hydrophobic residue that is thought to stabilize
interactions with other SNARE proteins in hetero-oligomeric
SNARE complexes” and is conserved in the SYP12 subfamily®, we
hypothesized that PEN1-3 might be impaired in SNARE complex
formation. Immunoblot analysis of leaf protein samples from wild-
type, penl-1 and penl-3 plants with a PENI antiserum showed that
monomeric PEN1-3 and wild-type PEN1 levels are indistinguishable
and that PEN1-1 is undetectable (Fig. 1a), thus demonstrating that
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An Arabidopsis Splicing RNP Variant STEP1
Regulates Telomere Length Homeostasis by
Restricting Access of Nuclease and Telomerase

Hyun Hee Yoo, Chian Kwon ™

Telomere is an essential DNA-protein complex composed
of repetitive DNA and binding proteins to protect the
chromosomal ends in eukaryotes. Telomere length is re-
gulated by a specialized RNA-dependent DNA polymerase,
telomerase and associated proteins. We show here a po-
tential role of STEP1 that was previously isolated by affin-
ity chromatography in controlling telomere length. While
STEP1 requires both RNA-binding domains for telomere
binding and subsequent DNA protection, it requires only
one RBD to interact with telomerase. The differential te-

, and In Kwon Chung*

These proteins bind telomeric DNA through the myb domain
and contribute to the formation of a specific telomere structure,
t-loop. They can also modulate telomerase activity via direct
interaction or by changing the telomere structure (van Steensel
and de Lange, 1997; van Steensel et al., 1998). Proteins be-
longing to the other group bind single strand telomeric DNA.
Two well-known motifs required for binding to single-stranded
telomeric DNA are the cligosaccharide/oligonuclectide-binding
(OB) fold and the RNA-binding domain (RBD). POT1 interacts
with single strand telomere through the OB folds and contrib-
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5. In chitin signaling in rice, both CEBIP and OsCERK1 proteins are required, because chitin

responses are inhibited by RNAI (see below). We now want to understand whether they are

interacting or not to cooperate in the chitin signaling. Please describe at least one method to

know their interaction.-
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